表面纳米化处理对TC4基TiN与TiAlN涂层冲蚀磨损性能的影响

张学东, 叶建中, 刘云飞, 姜欣, 樊永军, 邱晓来, 李方红, 杨宏杰, 王文山, 胡高攀

装备环境工程 ›› 2025, Vol. 22 ›› Issue (12) : 86-93.

PDF(17057 KB)
PDF(17057 KB)
装备环境工程 ›› 2025, Vol. 22 ›› Issue (12) : 86-93. DOI: 10.7643/ issn.1672-9242.2025.12.011
重大工程装备

表面纳米化处理对TC4基TiN与TiAlN涂层冲蚀磨损性能的影响

  • 张学东1, 叶建中2,*, 刘云飞1, 姜欣3, 樊永军1, 邱晓来2, 李方红1, 杨宏杰1, 王文山2, 胡高攀2
作者信息 +

Effect of Surface Nanostructuring on the Erosion Wear Resistance of TiN and TiAlN Coatings on TC4 Substrate

  • ZHANG Xuedong1, YE Jianzhong2,*, LIU Yunfei1, JIANG Xin3, FAN Yongjun1, QIU Xiaolai2, LI Fanghong1, YANG Hongjie1, WANG Wenshan2, HU Gaopan2
Author information +
文章历史 +

摘要

目的 分别研究90°、180 s冲蚀条件下TC4表面纳米化前处理对涂层的冲蚀性能和磨损特性。方法 先对TC4基材进行表面机械研磨(SMAT)纳米化处理,后采用多弧离子镀技术(MIP,Multi-arc Ion Plating)在TC4基材上分别沉积TiN和TiAlN涂层,探究纳米化前处理工艺对涂层性能的影响。结果 通过纳米压痕仪对TiN、TiAlN涂层的硬度进行表征,分别为32.53、39.5 GPa。利用摩擦磨损试验机对涂层的磨损性能进行了对比研究,纳米化后磨损率由10‒5 mm3/(N·m)级提升至10‒6 mm3/(N·m)。基于自主研制的砂粒冲蚀实验平台,系统评估了TiN与TiAlN涂层的耐冲蚀性能。SEM形貌分析表明,2种涂层的冲蚀损伤机制与抗冲蚀性存在显著差异。进一步研究发现,表面纳米化前处理能有效改善涂层的力学性能。结论 经纳米化前处理的TiAlN涂层,其界面结构能有效抑制冲蚀裂纹的萌生与扩展,从而表现出最优异的抗冲蚀性能。

Abstract

The work aims to study the effect of surface nanocrystallization pretreatment of TC4 substrate on the erosion resistance and wear behavior of the coatings under a normal impact angle (90°) for a duration of 180 s. Following surface mechanical attrition treatment (SMAT) for nanocrystallization of the TC4 substrate, TiN and TiAlN coatings were deposited via multi-arc ion plating (MIP) to investigate the effect of this pretreatment on the coating properties. The hardness of the TiN and TiAlN coatings, as measured by nanoindentation, was 32.53 GPa and 39.5 GPa, respectively. A comparative study was conducted on the wear resistance of the coatings with a tribometer. The results indicated that the wear rate was reduced from the order of 10‒5 mm3/(N·m) to the order of 10‒6 mm3/(N·m) after the nanocrystallization treatment. Based on the independently developed sand erosion experimental platform, the corrosion resistance of TiN and TiAlN coatings was systematically evaluated. SEM morphology analysis showed that there was a significant difference in the erosion damage mechanism and erosion resistance of the two coatings. Further research revealed that surface nano-treatment could effectively improve the mechanical properties of the coating. The interface structure of TiAlN coating with pre-nanification treatment can effectively inhibit the initiation and expansion of erosion cracks, thereby showing the best erosion resistance.

关键词

纳米化 / 多弧离子镀技术 / TiN / TiAlN / 磨损 / 冲蚀

Key words

nanocrystallization / multi-arc ion plating / TiN / TiAlN / wear / erosion

引用本文

导出引用
张学东, 叶建中, 刘云飞, 姜欣, 樊永军, 邱晓来, 李方红, 杨宏杰, 王文山, 胡高攀. 表面纳米化处理对TC4基TiN与TiAlN涂层冲蚀磨损性能的影响[J]. 装备环境工程. 2025, 22(12): 86-93 https://doi.org/10.7643/ issn.1672-9242.2025.12.011
ZHANG Xuedong, YE Jianzhong, LIU Yunfei, JIANG Xin, FAN Yongjun, QIU Xiaolai, LI Fanghong, YANG Hongjie, WANG Wenshan, HU Gaopan. Effect of Surface Nanostructuring on the Erosion Wear Resistance of TiN and TiAlN Coatings on TC4 Substrate[J]. Equipment Environmental Engineering. 2025, 22(12): 86-93 https://doi.org/10.7643/ issn.1672-9242.2025.12.011
中图分类号: TG172   

参考文献

[1] CHI J X, CAI Z Y, ZHANG H P, et al.Titanium Alloy Components Fabrication by Laser Depositing TA15 Powders on TC17 Forged Plate: Microstructure and Mechanical Properties[J]. Materials Science and Engineering: A, 2021, 818: 141382.
[2] HUANG Z Y, LIU H Q, WANG H M, et al.Effect of Stress Ratio on VHCF Behavior for a Compressor Blade Titanium Alloy[J]. International Journal of Fatigue, 2016, 93: 232-237.
[3] SINGH P, PUNGOTRA H, KALSI N S.On the Characteristics of Titanium Alloys for the Aircraft Applications[J]. Materials Today: Proceedings, 2017, 4(8): 8971-8982.
[4] BOYER R R.An Overview on the Use of Titanium in the Aerospace Industry[J]. Materials Science and Engineering: A, 1996, 213(1/2): 103-114.
[5] BALAN C, TABAKOFF W.A Method of Predicting the Performance Deterioration of a Compressorcascade Due to Sand Erosion[C]//21st Aerospace Sciences Meeting. Reno: AIAA, 1983.
[6] MUBOYADZHYAN S A.Erosion-Resistant Coatings for Gas Turbine Compressor Blades[J]. Russian Metallurgy (Metally), 2009, 2009(3): 183-196.
[7] ZHOU D P, PENG H, ZHU L, et al.Microstructure, Hardness and Corrosion Behaviour of Ti/TiN Multilayer Coatings Produced by Plasma Activated EB-PVD[J]. Surface and Coatings Technology, 2014, 258: 102-107.
[8] NAVEED M, RENTERIA A F, NEBEL D, et al.Study of High Velocity Solid Particle Erosion Behaviour of Ti2AlC MAX Phase Coatings[J]. Wear, 2015, 342: 391-397.
[9] WU F F, DENG J X. Erosion Wear Behavior of TiAlCrN Coating on Hard Metal Impacted by Solid Particles[J]. Applied Mechanics and Materials, 2010, 44/45/46/47: 2390-2393.
[10] PENG H, ZHOU D P, ZHANG J F, et al.Deposition of TiN by Plasma Activated EB-PVD: Activation by Thermal Electron Emission from Molten Niobium[J]. Surface and Coatings Technology, 2015, 276: 645-648.
[11] LI R Z, WANG S H, PU J B, et al.Study of NaCl-Induced Hot-Corrosion Behavior of TiN Single-Layer and TiN/Ti Multilayer Coatings at 500 ℃[J]. Corrosion Science, 2021, 192: 109838.
[12] 陈思宇, 雷剑波, 杨光, 等. 激光定向能量沉积多尺度TiN强化Ti6Al4V复合材料微观组织及耐磨性研究[J]. 激光与光电子学进展, 2024, 61(23): 290-298.
CHEN S Y, LEI J B, YANG G, et al.Microstructure and Wear Resistance of Multiscale TiN-Strengthened Ti6Al4V Composites Materials via Laser-Directed Energy Deposition[J]. Laser & Optoelectronics Progress, 2024, 61(23): 290-298.
[13] 宫名. 靶材中Al含量对TiAlCN涂层结构和耐磨性能的影响[J]. 佳木斯大学学报(自然科学版), 2022, 40(3): 103-106.
GONG M.Effect of Target Composition on Microstructure and Wear Resistance of Composite TiAlCN Coatings Fabricated by Magnetron Sputtering[J]. Journal of Jiamusi University (Natural Science Edition), 2022, 40(3): 103-106.
[14] DING X Z, ZENG X T.Structural, Mechanical and Tribological Properties of CrAlN Coatings Deposited by Reactive Unbalanced Magnetron Sputtering[J]. Surface and Coatings Technology, 2005, 200(5/6): 1372-1376.
[15] TONG C Y, LEE J W, KUO C C, et al.Effects of Carbon Content on the Microstructure and Mechanical Property of Cathodic Arc Evaporation Deposited CrCN Thin Films[J]. Surface and Coatings Technology, 2013, 231: 482-486.
[16] DING X Z, TAN A L K, ZENG X T, et al. Corrosion Resistance of CrAlN and TiAlN Coatings Deposited by Lateral Rotating Cathode Arc[J]. Thin Solid Films, 2008, 516(16): 5716-5720.
[17] UCHIDA M, NIHIRA N, MITSUO A, et al. Friction and Wear Properties of CrAlN and CrVN Films Deposited by Cathodic Arc Ion Plating Method[J]. Surface and Coatings Technology, 2004, 177/178: 627-630.
[18] LU K, LU J. Nanostructured Surface Layer on Metallic Materials Induced by Surface Mechanical Attrition Treatment[J]. Materials Science and Engineering: A, 2004, 375/376/377: 38-45.
[19] RUAN H T, WANG Z Y, WANG L, et al.Designed Ti/TiN Sub-Layers Suppressing the Crack and Erosion of TiAlN Coatings[J]. Surface and Coatings Technology, 2022, 438: 128419.
[20] BOBZIN K, BRÖGELMANN T, KALSCHEUER C, et al. Post-Annealing of (Ti, Al, Si)N Coatings Deposited by High Speed Physical Vapor Deposition (HS-PVD)[J]. Surface and Coatings Technology, 2019, 375: 752-762.
[21] WANG Z, MAO J, WANG J, et al.Influence of Shot Peening on the Fatigue Performance of Ti-6Al-4V Alloy Subjected to Various Surface Conditions[J]. Surface and Coatings Technology, 2020, 384: 125333.
[22] MAHADE S, ZHOU D P, CURRY N, et al.Tailored Microstructures of Gadolinium Zirconate/YSZ Multi-Layered Thermal Barrier Coatings Produced by Suspension Plasma Spray: Durability and Erosion Testing[J]. Journal of Materials Processing Technology, 2019, 264: 283-294.
[23] XIA B, ZHOU S G, WANG Y X, et al.Multilayer Architecture Design to Enhance Load-Bearing Capacity and Tribological Behavior of CrAlN Coatings in Seawater[J]. Ceramics International, 2021, 47(19): 27430-27440.
[24] HALL E O.The Deformation and Ageing of Mild Steel: III Discussion of Results[J]. Proceedings of the Physical Society Section B, 1951, 64(9): 747-753.
[25] PETCH N.The Cleavage Strength of Polycrystals[J]. J Iron Steel Inst Lond, 1953, 174: 25-28.
[26] TORRE F, HUMINIUC T, BARRA P, et al.Dense Nanocrystalline W Alloys: Enhancement of Hardness and Thermal Stability by Al Addition[J]. International Journal of Refractory Metals and Hard Materials, 2023, 112: 106150.
[27] ZHANG Z Q, ZHANG L, YUAN H, et al.Tribological Behaviors of Super-Hard TiAlN Coatings Deposited by Filtered Cathode Vacuum Arc Deposition[J]. Materials, 2022, 15(6): 2236.

基金

浙江省“尖兵领雁+X”研发攻关计划(2024C01235)

PDF(17057 KB)

Accesses

Citation

Detail

段落导航
相关文章

/